Fourth Order Chebyshev Methods with Recurrence Relation
نویسندگان
چکیده
منابع مشابه
Fourth Order Chebyshev Methods with Recurrence Relation
Abstract. In this paper, a new family of fourth order Chebyshev methods (also called stabilized methods) is constructed. These methods possess nearly optimal stability regions along the negative real axis and a three-term recurrence relation. The stability properties and the high order make them suitable for large stiff problems, often space discretization of parabolic PDEs. A new code ROCK4 is...
متن کاملOn Construction of Fourth Order Chebyshev Splines
It is an important fact that general families of Chebyshev and L-splines can be locally represented, i.e. there exists a basis of B-splines which spans the entire space. We develop a special technique to calculate with 4 order Chebyshev splines of minimum deficiency on nonuniform meshes, which leads to a numerically stable algorithm, at least in case one special Hermite interpolant can be const...
متن کاملRecurrence Relations for Chebyshev - Type Methods ∗
The convergence of new second-order iterative methods are analyzed in Banach spaces by introducing a system of recurrence relations. A system of a priori error bounds for that method is also provided. The methods are defined by using a constant bilinear operator A, instead of the second Fréchet derivative appearing in the defining formula of the Chebyshev method. Numerical evidence that the met...
متن کاملA numerical comparison of Chebyshev methods for solving fourth order semilinear initial boundary value problems
In solving semilinear initial boundary value problems with prescribed non-periodic boundary conditions using implicit-explicit and implicit time stepping schemes, both the function and derivatives of the function may need to be computed accurately at each time step. To determine the best Chebyshev collocation method to do this, the accuracy of the real space Chebyshev differentiation, spectral ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2002
ISSN: 1064-8275,1095-7197
DOI: 10.1137/s1064827500379549